

<u>Guía con nota acumulativa</u> Movimiento rectilíneo uniforme

Nombre(s): 1 PAUT /	4	Curso:
LINK YOUTUBE:	https://www.youtube.com/watch?v=WMntgav3ZKI	

Instrucciones generales

- Usted dispondrá de un tiempo razonable para realizar esta guía una vez subida a la plataforma, de los cuales usted es responsable de enviar al docente correspondiente dentro del plazo fijado. La fecha será publicada en la página del Liceo 1.
- La guía consta de **54 puntos** y se evalúa al 60% si es enviada dentro del plazo mencionado, de lo contrario se aplicara reglamento de evaluación.
- Puede trabajar de forma individual o en grupos hasta 3 personas como máximo.
- Lea atentamente las instrucciones de cada actividad para responder exactamente lo que se le solicita.
- Las respuestas pueden ser enviadas en dos formatos:
 - Imprimir la guía y escribir respuesta sobre esta. Posteriormente puede escanearla o tomar fotografías CLARAS y enviar.
 - 2. Crear un documento Word con las respuestas ORDENADAS. Cada respuesta debe llevar el número e ítem que corresponde para que así no se dificulte su revisión.

NOTA: Existe un programa denominado CamScanner que puede ser descargado en el celular en caso de l tener impresora con función de escáner.			
Contenidos	Objetivos		
1. Descripción del movimiento.	OA 9 Analizar, sobre la base de la experimentación, el		
1.1 Sistema de referencia y sistema de coordenadas.	movimiento rectilíneo uniforme y acelerado de un objeto		
1.2 Relatividad clásica y la adición de velocidades de	respecto de un sistema de referencia espacio-temporal,		
Galileo.	considerando variables como la posición, la velocidad y la		
1.3 Conceptos de trayectoria, distancia recorrida, desplazamiento, rapidez y velocidad.	aceleración en situaciones cotidianas.		
1.4 Diferencias entre rapidez de velocidad, rapidez	Objetivos específicos:		
media de rapidez instantánea y velocidad media	Utilizar las fórmulas de adición de velocidades de Galileo en		
de velocidad instantánea.	situaciones de la vida simple y cotidiana, como la de		
2. análisis de los movimientos horizontales	vehículos que se mueven unidimensionalmente.		
2.1 Descripción analítica y gráfica del movimiento	Analizar, conceptos de cinemática y herramientas gráficas y		
rectilíneo uniforme.	analíticas, el movimiento rectilíneo de un objeto en		
2.2 Confección de gráficos para el MRU, de posición	situaciones de la vida cotidiana.		
en función del tiempo, de velocidad en función del	Seleccionar la información explicita e implícita del enunciado		
tiempo.	y/o datos complementarios al texto, que es basal y		
2.3 Interpretación de gráficos del MRU.	fundamental para resolver el problema.		

- I. <u>PREGUNTAS DE VERDADERO Y FALSO</u>. Señala V (verdadero) o F (falso) según corresponda. Justifica las falsas, de lo contrario no se considerará el puntaje (1 punto c/u. Total 5 puntos)
- _F__ La trayectoria es el desplazamiento de un móvil. (El desplazamiento es un vector (línea recta), la trayectoria puede ser curva.
- ___V_ La trayectoria es el camino trazado por un objeto en movimiento y varía según el sistema de referencia.
- _F__ El desplazamiento es el espacio recorrido. (El desplazamiento es un vector (línea recta), la trayectoria puede ser curva, recta, circular etc.
- _V__ El espacio recorrido es el módulo del desplazamiento en un MRU.
- _V__ Un MRU presenta dirección constante y módulo de velocidad constante.
- II. <u>PREGUNTAS DE SELECCIÓN.</u> Destaca la alternativa que corresponda (1 punto c/u. Total 4 puntos)
- 1. El cuociente entre el desplazamiento de un móvil y el tiempo que emplea en hacerlo, define su:
 - a) Trayectoria
 - b) Velocidad.
 - c) Rapidez media
 - d) Aceleración media
 - e) Rapidez instantánea

- 2. Vector que une el punto de partida con el punto de llegada, corresponde a la definición de:
 - a) Posición.

 - b) Desplazamiento.c) Tangente.d) Rapidez instantánea.
 - e) Distancia recorrida.
- 3. La trayectoria de un móvil corresponde a:
 - a) El sistema de referencia.
 - b) La recta que une la posición inicial y la final del recorrido.
 - c) Toda la distancia que recorre un móvil. "Unión de todos los puntos por donde pasó el móvil" o "Curva que describe el móvil", ya que la distancia recorrida es la medida de esa trayectoria.
 - d) El lugar donde está el observador.
 - e) La línea recta que describe durante su movimiento.
- 4. Del siguiente gráfico es correcto afirmar que:
- Entre los 0 [s] y 20 [s] el cuerpo se mueve con rapidez I)
- II) El cuerpo varía su posición en los últimos 20 segundos. F
- III) A los 20 [s], el cuerpo se detiene V
- IV) El cuerpo al final de su movimiento se encuentra a 20 [m] de su posición inicial V

De las afirmaciones anteriores es (son) verdadera(s):

- a) Solo I.
- b) Sólo III.
- c) I, II y III.
- d) I, III, y IV.
- e) I, II, III y IV.
- ITEM DESARROLLO DE PROBLEMAS. A continuación resuelve cada uno de los ejercicios que III. se presentan, indicando claramente la información que se solicita y que queda explícita en los criterios de evaluación (3 puntos por c/ejercicio. Total):
 - 1 punto por plantear el problema (ecuación).
 - 1 punto por resolver el problema (desarrollo de la ecuación).
 - 1 punto por resultado correcto.
 - 1. La velocidad promedio de un cuerpo que recorre 300 metros en 2 minutos es: (3 puntos en total)

Transformar: $2 \min x 60 s = 120 s$

$$\bar{v} = \frac{d}{t} = \frac{300}{120} = 2.5 \, m/s$$

2. El tiempo que necesita un cuerpo para recorrer 1 kilómetro si su velocidad es de 10 m/s es: (3 puntos en total)

Transformar: 1 km a m, 1 km x 1000 m = 1000 m

$$t = \frac{d}{v} = \frac{1000}{10} = 100 \, s$$

2

3. 180 Km./ h, expresado en m/s es:

(3 puntos en total)

$$\frac{180 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 50 \text{ m/s}$$

20 Km./ h, expresados en m/s corresponde a:

(3 puntos en total)

$$\frac{20 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 5.5 \text{ m/s}$$

5. La distancia que recorre un cuerpo en 10 minutos si su velocidad es de 100 Km./h es: (3 puntos en total)

Transformar: 10 min a s = 10 min x 60 s = 600 s

100 km/h a m/s =
$$\frac{100 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 27.7 \text{ m/s}$$

Por lo tanto,

$$d = v \cdot t = 27.7 \frac{m}{s} \times 600 \ s = 16620 \ m$$

Dos vehículos salen al encuentro desde dos ciudades separadas por 300 km, con velocidades de 72 km/h y 108 km/h, respectivamente. Si salen a la vez responda a las siguientes preguntas:
 (3 puntos c/u. 6 puntos en total)

Transformar: 300 km a m = 300 x 1000 = 300.000 m

72 km/h a m/s =
$$\frac{72 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 20 \text{ m/s}$$

108 km/h a m/s =
$$\frac{108 \frac{\text{km}}{\text{h}}}{1 \frac{\text{km}}{\text{h}}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 30 \frac{\text{m}}{\text{s}}$$

$$(1) d = v \cdot t$$

Vehículo A: (2) $d = 20 \cdot t$

Vehículo B: (3) $300000 - d = 30 \cdot t$

a) El tiempo que tardan en encontrarse.

Reemplazando (2) en (3)

$$300.000 - 20 \cdot t = 30 \cdot t$$

$$300.000 = 30 \cdot t + 20 \cdot t$$

$$300.000 = 50t$$

$$\frac{300.000}{50} = t$$

$$6000 s = t$$

b) La posición donde se encuentran.

Reemplazando t = 6000 s en (2)

$$d = 20 \cdot t$$

$$d = 20 \cdot 6000$$

d = 120000 m

 Un auto sale de Santiago con una velocidad de 72 km/h. Dos horas más tarde sale de la misma ciudad otro auto en persecución del anterior con una velocidad de 108 km/h calcula: (3 puntos c/u. 6 puntos en total)

Transformar: 2 hrs a $s = 2 \times 3600 \, s = 7200 \, s$

72 km/h a m/s =
$$\frac{72 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 20 \text{ m/s}$$

108 km/h a m/s =
$$\frac{108 \frac{\text{km}}{\text{h}}}{1 \frac{\text{km}}{\text{h}}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 30 \frac{\text{m}}{\text{s}}$$

(1)
$$d = v \cdot t$$

Vehículo A: (2) $d = 20 \cdot (t + 7200)$

Vehículo B: (3) $d = 30 \cdot t$

a) El tiempo que tardan en encontrarse.

Reemplazando (2) en (3)

$$20 (t + 7200) = 30 \cdot t$$
$$20t + 144000 = 30t$$
$$144000 = 30t - 20t$$
$$144000 = 10t$$
$$\frac{144000}{10} = t$$

14400 s = t

b) La posición donde se encuentran.

Distancia vehículo A, Reemplazando t = 14400 s en (2)

$$d = 20 \cdot (t + 7200)$$
$$d = 20 \cdot (14400 + 7200)$$
$$d = 20 \cdot (21600)$$

d = 432000 m

Distancia vehículo B, Reemplazando t = 14400 s en (3)

$$d = 30 \cdot t$$

$$d = 30 \cdot 14400$$

d = 432000 m

8. Calcula la longitud de un tren cuya velocidad es de 72 km/h y que ha pasado por un puente de 720 m de largo, si desde que entró la máquina hasta que salió el último vagón han pasado 3/4 de minuto: (3 puntos en total)

Transformar:
$$72 \text{ km/h a m/s} = \frac{72 \text{ km/h}}{1 \text{ km/h}} = \frac{3600 \text{ s}}{1000 \text{ m}} = 20 \text{ m/s}$$

 $\frac{3}{4}$ min a s = 45 s

Longitud del Puente = 720 m

d = 720 m + longitud del tren

$$d = v \cdot t = 720 + X = 20 * 45$$

 $720 + X = 900$
 $X = 900 - 720$

9. Se produce un disparo a 2,04 km de donde se encuentra un policía, ¿cuánto tarda el policía en oírlo si la velocidad del sonido en el aire es de 343 m/s? ¿Y si fuera en otros materiales como: (3 puntos c/u. 15 puntos en total)

X = 180 m

Transformar: d = 2,04 km a m = 2,04 km * 1000 m = 2040 m

$$t = \frac{d}{v}$$

$$t = \frac{2040 \, m}{343 \, m/s}$$

$$t = 5,94 s \approx 6 s$$

a) En el agua (a 25 °C) es de 1493 m/s.

$$t = \frac{2040 \, m}{1493 \, m/s}$$

$$t = 1,36 s$$

b) En la madera es de 3700 m/s.

$$t = \frac{2040 \, m}{3700 \, m/s}$$

$$t = 0.551 s$$

c) En el hormigón es de 4000 m/s.

$$t = \frac{2040 \, m}{4000 \, m/s}$$

$$t = 0.51 \, s$$

d) En el acero es de 6100 m/s.

$$t = \frac{2040 \, m}{6100 \, m/s}$$

$$t = 0.33 s$$

e) En el aluminio es de 6400 m/s.

$$t = \frac{2040 \, m}{6400 \, m/s}$$

$$t = 0.31 \, s$$